
	 1	

Predicting the Outcomes of Baseball Games

Richard Harris, Allan Joshua, Justin Sirignano

Stanford University

Abstract: In this paper we investigate using machine learning algorithms to predict the
outcomes of baseball games. Baseball has a large amount of raw data, including
pitching, batting, and defensive statistics for each game. In addition, baseball has the
largest total number of games per season of any sport. This combination of readily
available data and the large number of games make baseball a great prospect for
machine learning. We use past data to predict the outcomes of baseball games with the
goal of discerning any patterns or shedding light on what characteristics produce a
winning baseball team. We use logistic boost and SVMS.

0.1 Introduction

Inherently, certain statistics a baseball team produces represent its capability to win. For
example, a team’s record gives good indication of how well a team will do in a game.
More times than not, the team with the better record wins. Another example is head to
head record. Usually, the team that has won most of the previous matchups wins, either
because the team is better as its record might indicate, or because the team matches up
well against the opposing team.

In addition to including features that account for the entire team’s performance, it is also
plausible that certain players account for a large amount of the team’s success, whether it
be power hitters on offense, or pitchers on defense. To represent this, we included
features that reflect how good home team hitters are vs. away team hitters, and how well
hitters on each team have done against their opponent’s starting pitcher. We also created
similar features for pitchers.

It is also common knowledge that both teams and players go on streaks and slumps. To
provide an accurate account of existing knowledge of these streaks and slumps to the
learners we used, data reflecting past performances in recent games is also included in the
feature set. Given features summarizing the opposing teams’ past and recent
performances, opposing hitters’ past and recent performances, and opposing pitchers’
past and recent performances, we felt our learners were ready to give us killer results!

0.2 Data and Choice of Features

	 2	

We created a large database detailing pitch-by-pitch events in each game for the last
thirty years. With this raw data, we wrote a series of queries to calculate the features we
were interested in. The features we looked at are:

§ Team statistics Head-to-head win differential
§ Win count differential in last x amount of games
§ Error count differential
§ Win count differential of home team wins at home in last x games vs.

away team wins away in last x games
§ Comparatively how well each team does against a starting pitcher of a

certain hand (left vs. right)

• Offensive statistics (recent performances1, performance by year to date2, and
career performance against opposing starting pitcher3)

§ Player-wise on base percentage
§ Player-wise slugging percentage
§ Total number of bases

• Pitching statistics (recent performances and performance by year to date)

§ At bats
§ Strike Outs
§ Walks allowed
§ Singles allowed
§ Doubles allowed
§ Triples allowed
§ Homeruns allowed

We believe that recent performances of players are essential because they reveal
important ���information about the “momentum” of those players entering the game. All
players go through streaks and slumps. Therefore, just using statistics for their careers
would be wildly inaccurate. It is better to take into account recent performance levels.

0.3 Methodology
0.3.1 Features

We are dealing with an inherently noisy data set (i.e., the best team may not win all the
time). Therefore, we desired an algorithm that is robust to noise. That is, it is less likely
to overfit noise. We choose to use logistic Boost for this reason. The weak classifiers are
trees. We also use SVM and compare the results.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Recent performances refer to player performance in the past 5, 10, 15, 20, and 25 games	
2	 Performance by year to date refers to player performance in the past 1, 2, 3, 4, and 5 years	
3	 Career	 performance	 against	 the	 opposing	 starting	 pitcher	 refers	 to	 a	 hitter’s	 past	 performance	 against	 the	
opposing	 starting	 pitcher	 in	 the	 past	 1,	 2,	 3,	 4,	 and	 5	 years.	

	 3	

We investigate several ways in which to improve our feature set. First, we tried
normalizing the features by their mean and variance. In addition, we attempted to use
polynomial features with a hope that the SVM would provide a superior fit given the
nonlinear data. Then, we tried to reduce the feature set by taking the features most
correlated with the outcome of the game. Finally, we also did a principal component
analysis to reduce the feature set into its most important principal components. We found
that these methods helped marginally, if at all.

To determine the optimal number of iterations for the Logistic Boost, we did a k-fold
cross validation with k = 10. To gauge the out-of-sample accuracy of the SVM and
Logistic Boost algorithms, we tested their fitted models on a separate validation set.

0.3.2 Choosing the Optimal Number of Weak Classifiers for Boost

Boost uses a number of weak classifiers to make predictions. The optimal number of
weak classifiers (i.e., the number of iterations Boost takes) must be determined. Too
many iterations is prone to overfit the data while too few may underfit the data. We find
the optimal number of iterations by dividing the training set into a smaller training set
and a cross-validation set. Below we show the cross-validated accuracy for Logistic
Boost for different numbers of iterations. We use these results to pick the number of
iterations for each Boost algorithm which gives the highest cross-validated accuracy as
the “optimal” number of iterations. Given the optimal number of iterations, we retrain
the Boost algorithm on the entire training set and then test it on a separate test set.

0.3.2 Choosing the Optimal C for SVM

We fully expect our data from baseball games to not be linearly separable. To
compensate for this, we used included a “C” parameter for the SVM. The final value of

	 4	

“C” was chosen by empirically running through values of “C” from 2-5 through 25.
Ultimately, we chose the value that produced the best results from these empirical tests.

0.4 Results and Discussion

First, we will provide a brief summary of our best results. In the paragraphs following
the summary, we outline some steps we took to attempt to improve our learner’s
performance. (BEST RESULTS HERE)

Our immediate thoughts were to try three learners: Logistic Boost, AdaBoost, and an
SVM. The results for each of these three learners is given below:

Learner Description Accuracy True Pos False Pos False Neg True Neg
Logit
Boost

25
iterations

57.60% 53.60% 46.40% 40.28% 59.72%

AdaBoost 50
iterations

58.60% 54.81% 45.19% 39.25% 60.75%

SVM C=10 58.4836% 53.85% 46.15% 37.86% 62.14%

Both of the implementations of the learners we used provide a probability associated with
each prediction. In thresholding the probability of the result, we can filter out games that
are difficult for the learner to decide. This trick usually provides about 5 to 10% better
results, but at the cost of making three quarters of the data unusable. Of course, this
translates to not being able to bet on a quarter of all games.

 Learner Accuracy % examples used
Logit Boost 65.52% 26.30%
SVM, C=10 67.41% 23.75%

We next tried to reduce the dimensionality of our feature vector by using the features
most correlated with the result. This produced mixed results, but overall, the
performance of the learner did not improve. We also tried using principal components
analysis where we took the first 75 principal components. This also yielded mixed
results.

Learner # Princ Comp Accuracy True Pos False Pos False Neg True Neg
Logit
Boost

75 55.94% 51.35% 48.65% 41.96% 58.04%

SVM 75 54.83% 49.72% 50.28% 40.68% 62.82%

While we understand sports are not deterministic, we were hoping to obtain better results.
To try to improve our results, we tried higher order polynomial features. This did not
help, however.

	 5	

On analyzing the learning curve and plotting Jtrain and Jcv,as part of the model selection
process, we realized that we were under fitting the data and the training error was high as
well which indicated a high bias problem. We then decided to use a neural network and
learn the parameters using back propagation. We used one hidden layer with 250 logistic
units on it. Using an advanced optimization algorithm (fmincg) we were able to train the
network within a reasonable timeframe. On increasing the number of iterations close to
500, the network started over-fitting the data and our training accuracy went up to 100 %
on the training set. The network however, did poorly on the test set and the accuracy was
only 53.124%

We then regularized the cost function and minimized that and by trying various values of
lambda, the network started generalizing well and gave good results on the test set. With
50 iterations we were able to get to an accuracy of 64%

We also tried SVM with an RBF kernel and tried to pick gamma and c. We did not have
time to implement this but we are planning to continue working on it. Our feature set size
and the number of training data points make an RBF kernel a prime candidate to pursue.
The cost function of the neural network was still decreasing on every iteration which
indicated that we would still be able to get better results. This is an avenue which we plan
to pursue as well.

	

0.5 Conclusion and Future Work

In conclusion, we tried several machine learning algorithms to predict the outcomes of
baseball games. The results were not spectacular, although we must recognize that the
outcomes of baseball games are very noisy and therefore difficult to predict. Predictions
made when the algorithm is confident (i.e., thresholding) are much more accurate. Future
work might attempt to develop a better feature set or a better algorithm. Something that
might be interesting to try would be Logistic Boost with logistic regression or SVMs as
weak classifiers.

